Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yun-Cheng Cui, Guang-Bo Che,* Xian-Feng Lin and Chun-Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail: guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.010 Å R factor = 0.033 wR factor = 0.073 Data-to-parameter ratio = 28.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[bromomercury(II)]-di- μ bromo- $\kappa^4 Br$:Br-[bromomercury(II)]- μ -1,3-bis(ethylsulfanyl)propane- $\kappa^2 S$:S']

The title complex, $[Hg_2Br_4(C_7H_{16}S_2)]_n$, has a chain structure. Two bridging Br atoms and two terminal Br atoms coordinate to two Hg^{II} atoms, forming an $(HgBr_2)_2$ dimer, which is located on an inversion center. The 1,3-bis(ethylsulfanyl)propane ligands, which lie on a twofold axis, bridge the $(HgBr_2)_2$ dimers, forming a one-dimensional chain. The Hg^{II} atom adopts a tetrahedral geometry, formed by three Br and one S atoms.

Comment

Recently, we and others have reported the crystal structures of some Hg^{II} complexes with flexible dithioether ligands, *viz*. 1,4-bis(ethylsulfanyl)butane (Liu *et al.*, 2005), 1,4-bis(benzyl-sulfanyl)butane (Che *et al.*, 2005) and 1,2-bis(phenylsulfanyl)ethane (Gong *et al.*, 2006). As a result of differences in the terminal groups and/or spacer lengths of ligands, these complexes display different structural features. In continuation of our work, we report here another one-dimensional chain dithioether–Hg^{II} complex, $[(HgBr_2)_2L]_n$ (*L* is 1,3-bis(-ethylsulfanyl)propane], (I).

As shown in Fig. 1, the title complex, (I), has a onedimensional chain structure formed by L ligands linking $(HgBr_2)_2$ dimers. Ligand L is in the normal μ -S,S' bridging coordination mode, and dimeric (HgBr₂)₂ is formed by two Br anions bridging two Hg^{II} cations and two terminal Br anions, as observed in the structure of [Hg₂Br₄(1,4-bis(benzylsulfanyl)butane)]_n (Che et al., 2005). The distances between Hg^{II} atoms within the dimer and across one L are 3.874 (2) and 6.359 (2) Å, respectively. The dimer is located on an inversion center, but the ligand L lies on a twofold axis. The Hg^{II} ion is coordinated by three Br atoms and one S atom from the L ligand in a distorted tetrahedral geometry, with the bond angles around Hg1 ranging from 91.67 (2) to $127.64 (5)^{\circ}$ (Table 1). Compared to (I), the Hg^{II}-1,4-bis(ethylsulfanyl)butane complex (Liu et al., 2005) has a dinuclear structure with different structural parameters. This can be attributed to the difference in the spacer lengths of the two dithioether ligands.

© 2006 International Union of Crystallography

All rights reserved

Received 8 June 2006 Accepted 12 June 2006

Experimental

1,3-Bis(ethylsulfanyl)propane (*L*) was synthesized according to the literature method of Hartley *et al.* (1979). An acetone solution (10 ml) of HgBr₂ (36 mg, 0.1 mmol) was mixed with a chloroform solution (10 ml) of *L* (33 mg, 0.2 mmol). The mixture was stirred and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After one week, colorless single crystals of (I) suitable for X-ray investigation were collected (yield 50%).

8211 measured reflections

 $R_{\rm int} = 0.062$

 $\theta_{\rm max} = 27.5^{\circ}$

1943 independent reflections

1648 reflections with $I > 2\sigma(I)$

Crystal data

$[Hg_2Br_4(C_7H_{16}S_2)]$	Z = 4
$M_r = 884.13$	$D_x = 3.445 \text{ Mg m}^{-3}$
Monoclinic, C_2/c	Mo $K\alpha$ radiation
a = 9.818 (2) Å	$\mu = 27.58 \text{ mm}^{-1}$
b = 11.948 (2) Å	T = 293 (2) K
c = 15.318 (3) Å	Block, colorless
$\beta = 108.41 \ (3)^{\circ}$	$0.14 \times 0.14 \times 0.12 \text{ mm}$
V = 1704.8 (6) Å ³	

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: numerical (*NUMABS*; Higashi,1995) $T_{min} = 0.121, T_{max} = 0.147$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0103P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.033$	+ 11.136P]
$wR(F^2) = 0.073$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.08	$(\Delta/\sigma)_{\rm max} = 0.001$
1943 reflections	$\Delta \rho_{\rm max} = 1.22 \text{ e } \text{\AA}^{-3}$
69 parameters	$\Delta \rho_{\rm min} = -1.65 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Hg1-S1	2.5107 (16)	Hg1-Br2	2.6086 (11)
Hg1-Br1	2.5238 (10)	Hg1–Br2 ¹	2.9409 (8)
S1-Hg1-Br1	127.64 (5)	Br1-Hg1-Br2	116.64 (4)
S1-Hg1-Br2	112.30 (5)	Br1-Hg1-Br2 ⁱ	95.35 (3)
S1-Hg1-Br2 ⁱ	100.79 (4)	Br2-Hg1-Br2 ⁱ	91.67 (2)

Symmetry code: (i) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Figure 1

Part of the polymeric structure of (I), showing 30% probability displacement ellipsoids [symmetry codes: (A) -x, y, $\frac{1}{2} - z$; (B) $\frac{1}{2} - x$, $\frac{1}{2} - y$, 1 - z; (C) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$].

H atoms were placed in calculated positions (C–H = 0.96 or 0.97 Å) and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}({\rm C})$ or $1.5U_{\rm eq}({\rm methyl}\ {\rm C})$. The highest peak and deepest hole in the final difference map are 0.73 and 0.71 Å, respectively, from atom Hg1.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXL97*; software used to prepare material for publication: *SHELXL97*.

The authors thank Jilin Normal University for supporting this work.

References

- Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2704–m2705.
- Gong, J.-B., Zhou, L.-N. & Chen, W. (2006). Acta Cryst. E62, m440-m441.
- Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. & McAuliffe, C. A.
- (1979). Inorg. Chim. Acta, 35, 265–277. Higashi, T. (1995). NUMABS. Rigaku Corporation, Tokyo, Japan.
- Liu, C.-B., Che, G.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2469– m2470.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.