Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yun-Cheng Cui, Guang-Bo Che,* Xian-Feng Lin and Chun-Bo Liu

Department of Chemistry, Jilin Normal University, Siping 136000, People's Republic of China

Correspondence e-mail:
guangbochejl@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.033$
$w R$ factor $=0.073$
Data-to-parameter ratio $=28.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[[bromomercury(II)]-di- μ -bromo- $\boldsymbol{\kappa}^{4} \mathrm{Br}$: Br-[bromomercury(II)]- μ -1,3-bis(ethylsulfanyl)propane- $\left.\kappa^{2} S: S^{\prime}\right]$

The title complex, $\left[\mathrm{Hg}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\right]_{\mathrm{n}}$, has a chain structure. Two bridging Br atoms and two terminal Br atoms coordinate to two $\mathrm{Hg}^{\mathrm{II}}$ atoms, forming an $\left(\mathrm{HgBr}_{2}\right)_{2}$ dimer, which is located on an inversion center. The 1,3-bis(ethylsulfanyl)propane ligands, which lie on a twofold axis, bridge the $\left(\mathrm{HgBr}_{2}\right)_{2}$ dimers, forming a one-dimensional chain. The $\mathrm{Hg}^{\mathrm{II}}$ atom adopts a tetrahedral geometry, formed by three Br and one S atoms.

Comment

Recently, we and others have reported the crystal structures of some $\mathrm{Hg}^{\text {II }}$ complexes with flexible dithioether ligands, viz. 1,4bis(ethylsulfanyl)butane (Liu et al., 2005), 1,4-bis(benzylsulfanyl)butane (Che et al., 2005) and 1,2-bis(phenylsulfanyl)ethane (Gong et al., 2006). As a result of differences in the terminal groups and/or spacer lengths of ligands, these complexes display different structural features. In continuation of our work, we report here another one-dimensional chain dithioether $-\mathrm{Hg}^{\mathrm{II}}$ complex, $\left[\left(\mathrm{HgBr}_{2}\right)_{2} L\right]_{n}$ (L is 1,3 -bis(ethylsulfanyl)propane], (I).

Received 8 June 2006
Accepted 12 June 2006

(I)

As shown in Fig. 1, the title complex, (I), has a onedimensional chain structure formed by L ligands linking $\left(\mathrm{HgBr}_{2}\right)_{2}$ dimers. Ligand L is in the normal $\mu-S, S^{\prime}$ bridging coordination mode, and dimeric $\left(\mathrm{HgBr}_{2}\right)_{2}$ is formed by two Br anions bridging two $\mathrm{Hg}^{\mathrm{II}}$ cations and two terminal Br anions, as observed in the structure of $\left[\mathrm{Hg}_{2} \mathrm{Br}_{4}(1,4-\right.$ bis(benzylsulfanyl)butane) $]_{n}$ (Che et al., 2005). The distances between $\mathrm{Hg}^{\text {II }}$ atoms within the dimer and across one L are 3.874 (2) and 6.359 (2) \AA, respectively. The dimer is located on an inversion center, but the ligand L lies on a twofold axis. The $\mathrm{Hg}^{\mathrm{II}}$ ion is coordinated by three Br atoms and one S atom from the L ligand in a distorted tetrahedral geometry, with the bond angles around Hg 1 ranging from 91.67 (2) to 127.64 (5) ${ }^{\circ}$ (Table 1). Compared to (I), the $\mathrm{Hg}^{\mathrm{II}}$-1,4-bis(ethylsulfanyl)butane complex (Liu et al., 2005) has a dinuclear structure with different structural parameters. This can be attributed to the difference in the spacer lengths of the two dithioether ligands.

Experimental

1,3-Bis(ethylsulfanyl)propane (L) was synthesized according to the literature method of Hartley et al. (1979). An acetone solution (10 ml) of $\mathrm{HgBr}_{2}(36 \mathrm{mg}, 0.1 \mathrm{mmol})$ was mixed with a chloroform solution $(10 \mathrm{ml})$ of $L(33 \mathrm{mg}, 0.2 \mathrm{mmol})$. The mixture was stirred and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After one week, colorless single crystals of (I) suitable for X-ray investigation were collected (yield 50\%).

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Hg}_{2} \mathrm{Br}_{4}\left(\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~S}_{2}\right)\right]} \\
& M_{r}=884.13 \\
& \text { Monoclinic, } C 2 / c \\
& a=9.818(2) \AA \\
& b=11.948(2) \AA \\
& c=15.318(3) \AA \\
& \beta=108.41(3)^{\circ} \\
& V=1704.8(6) \AA^{3}
\end{aligned}
$$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=3.445 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
$\mu=27.58 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless $0.14 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: numerical (NUMABS; Higashi,1995)

$$
T_{\min }=0.121, T_{\max }=0.147
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.073$
$S=1.08$
1943 reflections
69 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0103 P)^{2}\right.} \\
&+11.136 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-1.65 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{Hg} 1-\mathrm{S} 1$	$2.5107(16)$	$\mathrm{Hg} 1-\mathrm{Br} 2$	$2.6086(11)$
$\mathrm{Hg} 1-\mathrm{Br} 1$	$2.5238(10)$	$\mathrm{Hg} 1-\mathrm{Br} 2^{\mathrm{i}}$	$2.9409(8)$
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 1$	$127.64(5)$	$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br} 2$	$116.64(4)$
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 2$	$112.30(5)$	$\mathrm{Br} 1-\mathrm{Hg} 1-\mathrm{Br}^{\mathrm{i}}$	$9.35(3)$
$\mathrm{S} 1-\mathrm{Hg} 1-\mathrm{Br} 2^{\mathrm{i}}$	$100.79(4)$	$\mathrm{Br} 2-\mathrm{Hg} 1-\mathrm{Br}^{\mathrm{i}}$	$91.67(2)$

Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z+1$.

Figure 1
Part of the polymeric structure of (I), showing 30% probability displacement ellipsoids [symmetry codes: (A) $-x, y, \frac{1}{2}-z$; (B) $\frac{1}{2}-x$, $\frac{1}{2}-y, 1-z$; (C) $\left.\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z\right]$.

H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.96$ or $0.97 \AA$) and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C). The highest peak and deepest hole in the final difference map are 0.73 and $0.71 \AA$, respectively, from atom Hg 1 .

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97.

The authors thank Jilin Normal University for supporting this work.

References

Che, G.-B., Liu, C.-B., Cui, Y.-C. \& Li, C.-B. (2005). Acta Cryst. E61, m2704m2705.
Gong, J.-B., Zhou, L.-N. \& Chen, W. (2006). Acta Cryst. E62, m440-m441.
Hartley, F. R., Murray, S. G., Levason, W., Soutter, H. E. \& McAuliffe, C. A. (1979). Inorg. Chim. Acta, 35, 265-277.

Higashi, T. (1995). NUMABS. Rigaku Corporation, Tokyo, Japan.
Liu, C.-B., Che, G.-B., Cui, Y.-C. \& Li, C.-B. (2005). Acta Cryst. E61, m2469m2470.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: © 2006 International Union of Crystallography All rights reserved

